
Assignment Problem in Requirements Driven Agent
Collaboration and its Implementation

Jian Tang
Academy of Mathematics and

Systems Science
Beijing 100190, China
jtang@amss.ac.cn

Zhi Jin
Key Laboratory of High
Confidence Software
Technologies (MoE)

Peking University
Beijing 100871, China

zhijin@sei.pku.edu.cn

ABSTRACT
Requirements Driven Agent Collaboration (RDAC) is a mech-
anism where the self-interested service agents actively and
autonomously search for the required services submitted by
the request agents and compete to offer the services. This
mechanism would be more suitable for large number of au-
tonomous service providers on internet compared with the
current service-oriented computing framework. Collabora-
tion is an important issue in this mechanism.

This paper focuses on the collaboration issue in RDAC.
First, we define the assignment problem in RDAC and show
that it is NP-complete. Then, we model it as a Kripke struc-
ture with normative systems on it. This makes it possible
to bridge the assignment problem and the existing efforts
in normative systems, games, mechanisms, etc. Thirdly, a
negotiation-based approach is given to solve the problem
and the performance of the negotiation is evaluated by sim-
ulation. Finally, a tool for RDAC has been implemented to
put it into practice and for further testing and evaluation.

Categories and Subject Descriptors
I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Ar-
tificial Intelligence -Intelligent agents, Multiagent system.

General Terms
Design; Theory

Keywords
Task Allocation, Normative Systems, Negotiation

1. INTRODUCTION
With the introduction of service-oriented computing [13],

Web-based applications gain more and more attentions. A
typical framework for Web-based applications is Service Ori-
ented Architecture (SOA)[5]. It contains three primary par-
ties. The service provider publishes service descriptions and
provides the implementations for the services. The service
consumer finds the service descriptions in a service registry

Cite as: Assignment Problem in Requirement Driven Agent Collabora-
tion and its Implementation, J. Tang and Z. Jin, Proc. of 9th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2010), van der Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May,
10–14, 2010, Toronto, Canada, pp.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

and bind and invoke the services. The service broker pro-
vides and maintains the service registries. Here, service con-
sumer is responsible to find and compose suitable services
and bind and invoke them in a right order.

However, in many situation, it is quit difficult for service
consumer to do the job for using and composing services
distributed over Internet as the service consumer often has
no intent, interest or knowledge on how its needs can be
fulfilled. For example, a service consumer wants to have a
PC. It may not be expected that any consumer wants to
know that a PC consists of CPU, mainboard, hard disks
and so on as well as how to assemble the components. On
the other hand, in SOA, the provided services registered
in service brokers can only wait for being discovered and
invoked. The service providers have no way to take part in
the service discovery and composition and express whether
they are willing to supply the services based on for example
the payoff. In one word, the autonomy of the two parties
has been ignored.

In order to achieve the full power of service oriented com-
puting, both the service providers and the service consumers
should be understood as autonomous active computational
entities. They can autonomously search for registered ser-
vices and choose the roles that they will play in the collab-
oration for invoking and/or delivering a service so that the
interactions between them can be established dynamically,
and connected flexibly. Following this principle, automated
discovery, dynamic coordination, and autonomously collab-
oration of Web services become very hot issues[15].

Requirement Driven Agent Collaboration (RDAC) [17]
has been proposed to be an approach for dealing with the
autonomy issue. In RDAC, both service providers and ser-
vice consumers are treated as agents. The service consumer
needs not to know how to fulfill its service requests (i.e. the
request agents) but publishes them in somewhere on the In-
ternet. The provided services (i.e. the service agents) will
actively discover those service requests to which they can
contribute. If there are two or more service agents who can
provide the same service, they compete to be selected. If
a service request can not be satisfied by one service agent,
several service agents will form a coalition to supply the ser-
vice.

RDAC includes three parts: the knowledge part, the ag-
gregation part, and the collaboration part. The knowledge
part (mainly an function ontology FO) provides the shared
knowledge among all service agents and request agents. In

839

839-846

the aggregation part, based on the knowledge in FO, ser-
vice agents search for the request agents to which they can
contribute even partially. In this way, service agents aggre-
gate around the request agents with a ‘contribute-to’ rela-
tion and a ‘expecting-repay’ relation. Finally, in the collab-
oration part, these service agents and request agents collab-
orate with each other to work out a solution that satisfies
all agents of both sides, i.e. the request agents consume the
expected services and the service agents obtain the expected
repay.

The main issue in the collaboration part is in fact a task
allocation problem[14]. But in RDAC setting, this is quite
challenge as both the request agents and the service agents
are autonomous and self-interested. We can not get the so-
lution by only maximizing the assigner’s benefit but should
by maximizing the agents’ total welfare under the condition
that everyone is satisfied. [12] proposed a multiagent ap-
proach for finding a solution to the task selection problem.
This approach is based on an architecture and programming
model in which agents represent applications and services.
However, the agents in this work are considered as passively
waiting for being chosen, which lacks of the interactions be-
tween agents such as competing, negotiating, requesting and
so on.

Also, there are many other related works. However, most
of them ignore the privacy of agents and are based on cen-
tralized settings. For example, [9] develops a protocol that
enables agents to negotiate and form coalitions. It assumes
that the agent knows the capabilities of all others. And
the proposed protocol is centralized where one manager is
responsible for allocating the tasks. [10] provides the possi-
bilities of achieving efficient allocations in both cooperative
and non-cooperative settings. They propose an algorithm
to find the optimal solution, but it is also centralized.

This paper aims to give a negotiation-based solution for
the task allocation problem among self-interested agents on
the decentralized setting. First of all, we give a definition
of the assignement problem in mathematical form and show
that it is NP-complete. Then we define its model based on
a Kripke structure with normative systems. That bridges
the problem with the current efforts on normative systems,
games, mechanisms, etc. After that, a negotiation-based
approach is given. Experiments shows that the performance
of the negotiation is quite satisfiable.

This paper is organized as follows. In section 2, we give
the concepts and process in RDAC, and then figure out the
assignment problem. Section 3 models the problem as a
Kripke structure with normative systems defined on it. Sec-
tion 4 defines a negotiation process for the task assignment
problem. The simulation results are also included in this
section. Section 5 designs an execution tool for RDAC. Fi-
nally, we discuss the related work in section 6 and conclude
the paper in section 7.

2. ASSIGNMENT PROBLEM IN RDAC
With the decentralized settings in RDAC, both service

agents and the request agents need to understand each other
for obtaining a collaboration. An ontology, i.e. the Function
Ontology (FO), has been built for this purpose. By using
the terminology in FO, service agents can understand the
required functions of the request agents and request agents
can know the capabilities of the service agents.

FO not only makes agents understand each other, but

also provides knowledge on to achieve a composed function
by using a set of elementary functions by using a function
decomposition tree. When a service consumer submits a
service request, FO produces a function decomposition tree
and asks service agents to make contribution. Any service
agent then examines the function decomposition tree and
finds the elementary functions that it is capable to do. In
this way, around a function decomposition tree, candidate
service agents aggregate together to form a coalition. Nor-
mally, such a coalition is not unique and one stable coalition
needs to be chosen among them to be the realization body
for satisfying the needs of the request agent. Some kind of
mechanisms are needed to ensure a stable coalition.

After obtaining a stable coalition, for implementing the
required function, each elementary function need to be as-
signed to a competent service agent in the coalition. As
agents are self-interested, every agent wants to get more
functions for gaining more payoff. But, there is not an agent
which can satisfy the request agent by its own. The agents in
a coalition have to collaborate. We assume that every service
agent has a minimum expected payoff, known as reservation
payoff in Economics. A service agent will quit the coalition
if its reservation payoff can not be satisfied.

Then, the question is how to assign the elementary func-
tions to the service agents of a coalition so that the assign-
ment can satisfy all the service agents’ reservation payoff
and in it each service agent can get more than in other coali-
tions? Here, we consider “better” to be the service agent’s
total welfare, i.e. the satisfaction degree that will be defined
below.

On the other hand, like the service agents, any request
agent has also its reservation payoff that can be defined as
the minimum expectant quality of provided services. In-
spired by Maximilien’s OoS Ontology [11] which includes
a set of quality evaluation items, such as the responding
time, the throughput, the latency, the load balance and so
on, we introduce a quality evaluation function to compute
the quality of agent A fulfilling function F . If there are
n quality items which are on an unique evaluation interval
[0, M], M ∈ R, the function is

Q(A, F) =
n∑

i=1

ωiσi

In which, σi ∈ [0, M] is the evaluation value for the ith

quality item, ωi (
n∑

i=1

ωi = 1) is the weight for the ith quality

item of the request agent.

Definition 1. (Assignment Problem) Let C = {A1, A2, . . . ,
An} be a stable coalition and F = {F1, F2, . . . , Fm} be a
set of elementary functions that the coalition needs to im-

plement. pi (
m∑

i=1

pi = 1, 1 ≤ i ≤ m) is the weight of

Fi. Ai is capable of implementing Fj and the quality is
Q(Ai, Fj). Suppose Wi ⊂ F is the set of elementary func-
tions that Ai is capable of implementing and Ti ⊂ Wi is
the set of functions that are assigned to Ai. An assign-
ment S is an n-dimensional vector (T1, T2, . . . , Tn) requiring
{T1, T2, . . . , Tn} to be a set-partitioning of F .

Given Q, the reservation payoff of the request agent, and
Pi (1 ≤ i ≤ n), the reservation payoff of each service agents,
it is desired to find an assignment S∗ which satisfies:

840

1. Q(S∗)
Q(C)

+
n∑

i=1

Pi(S
∗)

Pi(C)
= max

S
(Q(S)

Q(C)
+

n∑
i=1

Pi(S)
Pi(C)

); and

2. Q(S∗) � Q, Pi(S
∗) � Pi, i = 1, 2, . . . , n

In which,

• Q(S) =
n∑

i=1

∑
j∈Ti

pjQ(Ai, Fj) ∈ [0, M] is the quality of

assignment S;

• Pi(S) =

∑
j∈Ti

pjQ(Ai,Fj)

Q(S)
P (S) is the payment of Ai in

assignment S;

• P (S) = f(Q(S)) is the payment function that the re-
quest agent is willing to pay for S;

• Q(C) =
m∑

j=1

pj max
i

Q(Ai, Fj) is the request agent’s

ideal assignment;

• Pi(C) =

∑
j∈Wi

pjQ(Ai,Fj)

Q(S)
P (S) is Ai’s maximum pay-

ment in S.

Let SDR(C, S) = Q(S)
Q(C)

be the satisfaction degree of the

request agent and SDAi(C, S) = Pi(S)
Pi(C)

the satisfaction de-

gree of service agent Ai, the assignment problem in RDAC is
to find out an assignment which maximizes both the service
agents’ and the request agent’s total satisfaction degree and
satisfies their respective reservation payoff.

Theorem 1. The complexity of the assignment problem
in RDAC is NP-complete.

Proof. Consider a special case, i.e. let n = 2,

W1 = {F1, F3, F4, . . . , Fm},

W2 = {F2, F3, F4, . . . , Fm},

Q(A1, Fj) = Q(A2, Fj), (j = 3, 4, . . . , m).

For any S,

Q(S) = p1Q(A1, F1) + p2Q(A2, F2) +

m∑

j=3

pjQ(Fj)

is constant. Let

P1 = (p1Q(A1, F1) +
1

2

m∑

j=3

pjQ(Fj))
f(Q(S))

Q(S)

P2 = (p1Q(A2, F2) +
1

2

m∑

j=3

pjQ(Fj))
f(Q(S))

Q(S)

We are finding an assignment S∗ such that Pi(S
∗) ≥ Pi.

Notice that, P1(S
∗) + P2(S

∗) = P1 + P2 = f(Q(S)). This is
equivalent to the partition problem which is an NP-complete
problem.

Transforming it into a 0-1 integer programming problem,
this problem can be solved with some optimization tools
such as Lingo etc. However, some obstacles frustrate to use
these tools directly. First, its time complexity is very high.
Second, some necessary information about the agents may

not be available because of the privacy. For example, the
agents may not want to disclose their reservation payoff as
they may lose some possible benefits if others know the in-
formation. They are likely willing to keep their reservation
payoffs private. Finally, in practice, it is difficult to deter-
mine some variable’s values. Again, we take reservation pay-
off for example. A service agent can tell whether to accept
or refuse a payoff but not the exact value of its reservation
payoff. In fact, any service agent is always trying to make
its payoff as much as possible.

3. NORMATIVE SYSTEMS
Since we treat both the service provider and the service

requester as agents, we take the advantage of technologies in
multiagent systems. Normative systems has been considered
to be a highly influential approach to coordination in the
area of multiagent systems[3]. And some other technologies
are helpful to modeling the assignment problem, such as
the Kripke Structures [6] and the Computation Tree Logic
(CTL)[6].

For defining the Kripke structure of the assignment prob-
lem in RDAC, we first define the state in it. A state s of the
assignment problem in RDAC is an m-dimensional vector
(ρ1, ρ2, . . . , ρm), where ρi ∈ {1, 2, . . . , n} indicates that func-
tion Fi is assigned to agent Aρi . Then the Kripke structure
of the assignment problem in RDAC is defined as a 6-tuple:

< S, S0, R, A, α, V >

where,

• S is a finite, non-empty state set;

• S0 ⊆ S is an initial state set;

• R ⊆ S × S is a total binary relation on S, which is
called the transition relation;

• A = {1, 2, . . . , n} is a set of agents;

• α : R → A labels each transition in R with an agent;

• V : S → 2Φ labels each state with the set of proposi-
tional variables that are true in this state.

Based on the Kripke structure, the semantics of the as-
signment problem in RDAC and some restrictions can be
given.

S = {(ρ1, ρ2, . . . , ρm)|Fi ∈ Wρi , i = 1, 2, . . . , m}, i.e. any
state in S is an assignment.

S0 = {(ρ1, ρ2, . . . , ρm)|Q(Aρi , Fi) = max
j

Q(Aj , Fi)}, i.e.

any initial state in S0 is the state that every elementary
function is assigned to the service agent which has the best
implementation quality.

Let ((ρ1, ρ2, . . . , ρm), (ρ
′
1, ρ

′
2, . . . , ρ

′
m)) ∈ R. If ρi �= ρ

′
i, (1 ≤

i ≤ m), agent ρi and agent ρ
′
i compete for the ith func-

tion. R contains only the transitions from which only one
agent can compete for a function. For example, transition
((1, 2, 3), (2, 2, 3)) means the state transits from “function 1
is assigned to agent 1” to “function 1 is assigned to agent 2”;
transition ((1, 2, 3), (2, 3, 3)) means that agent 1 and 2 are
competing for function 1 meanwhile agent 3 is competing
with agent 2 for function 2. The former is included in R, and
the latter is not. That is just for simplification by allowing

841

a single agent to execute a single action in one state (in-
terleaved concurrency). Going on with the example, α will
map ((1, 2, 3), (2, 2, 3)) to agent 2, and ((2, 2, 3), (1, 2, 3)) to
agent 1. So we conclude that a transition in R indicates an
agent is requesting for carrying out more functions.

Furthermore, we use Computation Tree Logic (CTL) to
express the objectives of the normative systems:

• (E © ϕ) on some path, ϕ is true next;

• E(ϕUψ) on some path, ϕ until ψ;

• E(�ϕ) on some path, eventually ϕ;

• E(�ϕ) on some path, always ϕ;

• A(©ϕ) on all paths, ϕ is true next;

• A(ϕUψ) on all paths, ϕ until ψ;

• A(�ϕ) on all paths, eventually ϕ;

• A(�ϕ) on all paths, always ϕ;

With these notations, for any 1 ≤ i ≤ n, agent i’s objec-
tive γi can be expressed as A(�ϕ), where ϕ is in the form of
si
1 ∨ si

2 ∨ . . ., here si
j j = 1, 2 . . . is the state. That means

that the system will always get to one of the states si
1, si

2,. . .
eventually. Under these states, i will get the payment that is
more than its reservation payoff. Then the objective of our
Kripke structure is γ1∧γ2∧ . . .∧γn. Fulfilling this objective
needs constraints on agents’ behaviors, i.e. on the transition
relation. That can be modeled as a normative system. For-
mally, a normative system η ⊆ R is defined in the context of
a Kripke structure such that R\η is a total relation. That

is, (s, s
′
) ∈ η means transition (s, s

′
) is forbidden.

By providing a suitable normative system, the assignment
problem in RDAC can be solved. This builds the bridge be-
tween RDAC and the available works on normative systems,
games, mechanisms, etc. With these works, some interest-
ing issues like robustness [4] or applying power indices [2]
can be introduced into RDAC. Next section will provide a
normative system for the assignment problem in RDAC in
a negotiation-based manner.

4. NEGOTIATION
This section presents a negotiation framework in which

the service agents and the request agent negotiate to change
the state of the system. We focus on the state transition
in the Kripke structure, i.e. a state transition is viewed as
a proposal by an agent. In the process of negotiation, one
agent transits the state to another; another agent can accept
or refuse it. If the proposal is accepted, the state transition
happens, otherwise, the first agent proposes a new proposal
for transiting the state to a new one. This process is showed
as an UML sequence diagram in Figure 1.

In Figure 1, the request agent first choose a state to make
proposal, meaning he wants the assignment of that state. It
is the initial state of the Kripke structure, i.e. every elemen-
tary function is assigned to the service agent which has the
best quality to implement the function. This is reasonable
as any request agent wants to get the best service. Then the
service agents evaluate the state to see if it is satisfiable. If a
service agent accepts the state, it will do nothing; otherwise,
it will transit the state. The decision on being “accepted”

…... …...…...

4.Negotiate
5.Modify

4'.Negotiate
5'.Modify

1.Choose

2.Propose

3.Evaluate

1'.Choose

2'.Propose

3'.Evaluate

1''.Choose

Service AgentsProposed StateModified StatesRequest Agent

Figure 1: Process of Negotiation

or being “refused” is made based on the reservation payoff.
Those states that satisfy the service agent’s reservation pay-
off will be accepted but others will be refused.

After that, the service agents which refuse the proposed
state should negotiate with others and then modify the states.
They trigger transitions that are included in R. Any agent
i, will not negotiate with those agents which are assigned
functions that are not included in its capable set Wi. And
they may work out several states that have already satis-
fied some of the agents but not all. Then, the request agent
chooses one state that satisfies itself best (with the greatest
total quality) and after that the request agent proposes it to
the service agents. This proposed state starts a new round
of negotiation.

Three possible situations will terminate the negotiation.

• if all service agents accept the request agent’s proposal
in some round, the negotiation ends with success.

• if the service agents could not make a valid transition
when it negotiates with others, the negotiation ends
with failure

• if the request agent can not make a choice in the mod-
ified states, i.e. all modified states worked out by the
service agents can not satisfy the request agent’s reser-
vation payoff, the negotiation ends with failure.

We simulate the negotiation process to evaluate the ne-
gotiation. We set a numerical experiment that includes 4
groups of different service agents and elementary functions.
Randomly generating the information of the service agents
and the request agent (i.e. their reservation payoff), each
group is simulated for 100 times. Take the group with 10
service agents and 20 functions for example, the statistic
data is given as follows.

842

0 0.1 0.2 0.3 0.60.50.4 0.7 0.8 0.9 1.0

Figure 2: Negotiation to Optimal Result

 Reservation
Payoff Proportion

Negotiation Round

Figure 3: Relation between Proportion and Negoti-

ation Round

First, in each simulations, optimal assignment exists. But
four of them terminate without an assignment. Thus, the
successful rate of negotiation is (100 − 4)/100 = 96%.

Second, we compare the assignment got by negotiation
with optimal one. Denote σ∗ as the total satisfaction degree
of assignment got by negotiation, and σ as the total satis-
faction degree of optimal assignment. The ratio τ = σ∗/σ
describes how close the negotiation assignment is to the op-
timal assignment. Figure 2 shows the statistic data of τ , in
which x axis is the value of τ , and y axis is the number of
negotiations corresponding to η. We can see that, in 96 suc-
cessful negotiations, 65 of them have the value larger than
0.9.

Third, we want to know when the negotiation terminates,
i.e. how many rounds does the negotiation take when it ter-
minates. This mainly relates to average proportion of the
agent’s reservation payoff in its fully assigned total payoff.
For example, if an agent’s reservation payoff is 50 and it will
get 100 if it is assigned all its capable functions, the pro-
portion is 50%. Figure 3 illustrates the direct proportion
relation between the proportion and negotiate round. In
fact, agent with greater proportion is more likely to unsatis-
fied in an assignment, so more negotiation round is needed.
This is well proved in the figure. The number of negotiation
round rises as the proportion rises, and it becomes steeper
when the proportion is higher. But after a steeper rise, it
falls down very sharply. The reason is that when proportion
is too large, agents require more payment so they can not be
satisfied easily. So the agents will quickly understand that
they could not get a deal, and negotiation breaks down, i.e.
the number of negotiation round becomes smaller.

0.0 0.1 0.2 0.3 0.4 0.90.80.70.60.5 1.0

Figure 4: SD of Request Agent

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Figure 5: SD of Service Agents

Next, Figure 4 shows the satisfaction degree of the request
agent. There are 96 successful negotiations. In all of them,
the request agent’s satisfaction degree is higher than 0.8.
Further, most of them (95 in 96) have the value higher than
0.9.

The service agent’s satisfaction is a little complicated.
Here we consider an “average” concept. Let’s look at the
setting of the simulation. In the setting, there are 10 service
agents and 20 elementary functions and each agent can do
averagely 6 functions. So the average number of functions
that are assigned to an agent is approximately 20/10 = 2.
Then the average expect satisfaction degree could be calcu-
lated by 2/6 = 0.33. So the total satisfaction degree of 10
service agents is 0.33 × 10 = 3.3. Figure 5 records the total
satisfaction degree of 10 service agents.

According to the statistic data, among 96 negotiations
that are successful, 20 of them have the total satisfaction
degree of service agents lower than 3.3; 76 of them are higher
than 3.3. This indicates the that service agents could fre-
quently get higher total satisfaction degree than the expect
average value.

Analysis of other three group is similar with the group
with 10 service agents and 20 request agents. For compari-
son, the concrete statistics data of the 3 groups are given in
appendix. We see that in all the group, the successful rate
is more than 90%. All the properties discussed in the 10&20
group remain.

5. THE IMPLEMENTATION
In order to put the RDAC into practice, we design a tool

843

for it. It is implemented in Java language and is designed
on basis of two frameworks: Protege [8] and JADE [7]. Pro-
tege, a free, open source ontology editor and knowledge-base
framework, mainly helps us model, edit and manage the
Function Ontology. An ontology agent is designed. It is in
charge of ontology management by the help of protege. The
request agents and the service agents communicate with the
ontology agent to get information on the function decom-
position. Then the published service functions can be un-
derstood by the service agents. Protege ontologies can be
exported into a variety of formats including RDF(S), OWL,
and XML schema. Here in the tool, OWL is selected.

JADE (Java Agent DEvelopment Framework) is a pow-
erful software framework that simplifies the implementation
of multiagent systems through a middle-ware that claims to
comply with the FIPA specifications and through a set of
tools that supports the debugging and deployment phase.
The agent platform in JADE can be distributed across ma-
chines even with different OS, and this provides convenience
for service providers distributed on the Internet and makes
it possible to realize communications among different kinds
of providers. We choose JADE as the platform of RDAC
tool, because it shares advantages that better suit our need.

Agent class in JADE fully complies with FIPA specifica-
tion. It represents a common base class for user defined
agents where service provided by an agent can be imple-
mented as one or more behaviors. A scheduler, which is
fulfilled by JADE, automatically manages the scheduling of
behaviors. Therefore, we design service agent to extend the
base Agent class in JADE. This implies the inheritance of
features to accomplish basic interactions with the agent plat-
form and a basic set of methods that can be called to im-
plement the custom behavior of the agent (e.g. send/receive
message, use standard interaction protocols, etc.). It is also
very convenient for us to introduce our designed agent by
figure 6 and-8, which are derived from Agent life-cycle as
defined by FIPA. A agent can be in one of several states,
according to Agent Life Cycle in FIPA specification where:

• INITIATED: the agent is created with all needed in-
formation but hasn’t registered itself yet. In this stage,
the agent can not do any behavior and even has neither
a name nor an address.

• ACTIVE: the agent has registered itself and has all
features that the agent should have in JADE. This is
the main stage of the life cycle.

• Transit: in this stage, the agent might migrate to a
new location. But it continues sending and receiving
messages at the new location.

• WAITING: the agent is blocked and will be waked up
when a certain condition is met. Typically, the agent is
often waked up when a message sent by another agent
arrives.

• SUSPENDED: the internal thread of the agent is sus-
pended and no behavior is being executed in this stage.

There are three kind of agents: Service Agent (SA), Re-
quest Agent (RA) and Ontology Agent (OA). Figure 6 is
the life cycle of service agent containing detailed state tran-
sitions in each stage. First, the service agent is initiated. In
this stage, the service agent is initialed with its capable func-
tions, reservation payoff, and strategy for negotiating. Then

Capable functions

Reservation payoff

Strategy

Send capability information to OA

Search for requirement

Send requirement to OA

Match decomposed functionsSend application to RA

Wait

Wake up

Negotiate
Suspend

Wait

End

End

Resume

Move

Execute
Invoke

Transit

Initiated

SuspendedWaiting

Destroy

Quit

Unknow

Create

Active

Figure 6: Service Agent Life Cycle

Requirement

Reservation payoff

Strategy

Publish requirement

Receive application

Select service agents

Inform service agents

Wait

Wake up

SuspendEnd

Resume

Move

Execute Invoke

Transit

Initiated

SuspendedWaiting

Destroy

Quit

Unknow

Create

Active

Negotiate

Figure 7: Request Agent Life Cycle

It is invoked to be active. In this stage, the service agent
first sends its capability information to the ontology agent in
order to get ontology information on its providing services.
Then the service agent searches for the service request on the
internet. After that, it sends the newly obtained request to
the ontology agent, and then gets the function decomposi-
tion of request. Next, it matches the elementary functions
in this decomposition with its capable functions’ description
to see whether it can provide services for the request. If no,
it is then suspended; if yes, it sends the application to the
request agent and goes to waiting stage to wait for being
waked up by the request agent. When backing to active
stage, the service agent negotiates with the request agent.
After negotiation terminating, the service agent ends and is
destroyed.

Similar to the service agent, the life cycle of the request
agent is designed as showed in Figure 7. The request agent
is initialed with its request, reservation payoff and strategy
for negotiating. When invoked to active stage, it publishes
its request and then will receive applications from the ser-
vice agents. Then the request agent selects preferable ser-

844

Publish requirement

Receive application

Inform service agents

Negotiate

Send capability information to OA

Search for
requirement

Send requirement to OA

Send application to RA

Negotiate

Wait

Load Ontology

Provide inquiry service

Ontology Agent

Service AgentRequester Agent

Figure 8: Overview of agents and communications

vice agents and informs them. Finally, the request agent
negotiates with the service agents to assign the elementary
functions.

The ontology agent is designed for providing knowledge
for the service agents and the request agents. Function On-
tology [17][16] is used. The ontology agent includes only two
states. First, the ontology agent is initialed with the func-
tion decomposition patterns. Second, the ontology agent
provides the inquiry services to the service agents and the
request agents.

Figure 8 shows the overview of the communication among
these three kinds of participants. The service agents, the
request agents and the ontology agent are connected. They
communicate with each other by sending messages. In the
figure, we use dotted line to separate three kinds of agents.
The communications (messages) between them are drew as
bold arrows. There are many service agents in the system,
and we draw one of them only. The double-head bold arrow
on the top of the figure indicates the communication between
two agents.

In order to demonstrate the process, we first run the ap-
plication with an example of 10 service agents and a request
submitted by a request agent OnlineTest. The main inter-
face is shown in Figure 9 which includes two parts. The
first is the platform that displays all the agents (at the left
side) and records all information on agents’ communication.
The second is Sniffer Agent who is designed for watching the
communication in an easy way.

Second, we use Dummy Agent, which is designed for mon-
itoring the process (usually used as a debugging tool when
programming), to start the RDAC process by letting Dummy
Agent send ACL message “OnlineTest” to service agents
(Figure 10).

Finally, Figure 11 shows the communications among all
the agents in a whole process of RDAC. By double clicking
corresponding line, detail information on message can be
viewed.

6. RELATED WORK
Task allocation in multiagent systems has been investi-

gated in recent years with different assumptions and em-

Figure 9: Main Interface

Figure 10: Start the RDAC

Figure 11: Communications

845

phases. However, most of the them ignore the privacy of
agents, and study the problem in a centralized setting. For
example, [9] develop a protocol that enables agents to nego-
tiate and form coalitions. It assumes that the agent has the
capability information of all others. Also the proposed pro-
tocol is centralized where one manager is responsible for al-
locating the tasks. [10] provides the possibilities of achieving
efficient allocations in both cooperative and non-cooperative
settings. They propose an algorithm to find the optimal so-
lution, but it is centralized. There are some works relates the
problem with web services. [1] gives mediators who receive
the task and have connections to other agents. They break
up the task into subtasks, and negotiate with other agents
to obtain commitments to execute these subtasks. Different
with this work, we have need no mediator so we should focus
on modeling the whole agent system and negotiation process
but not just the decision process of just a single mediator;
also the agents gain more flexibility in our setting. A typical
work is [12]. The agents in this work are selected according
to the trust values of them and the selection is centralized.

Normative systems is a hot topic in multiagent systems
area recently. It is a useful tool to coordination in multi-
agent systems. [3] gives the basic concepts and assumptions
of it. Some more results are given such as robustness, ap-
plying power indices, etc. These results will help us for the
future work of strategy of agents.

7. CONCLUSIONS
In RDAC, the service agents actively search for service

requests and then match themselves with the elementary
functions in the requests. In this mechanism, on one hand,
service providers no longer has to understand the request.
On the other hand, it need not an service agency in SOC to
give a center control over or manage provided services.

The assignment problem of RDAC is defined as finding
out an assignment that can satisfy all the agents’ reservation
payoffs. This is an NP-complete problem. We model it as
a Kripke structure with a normative system on it. This
builds the bridge between RDAC and the available works
on normative systems, games, mechanisms, etc. With these
works, some interesting issues like robustness [4] or applying
power indices [2] can be introduced into RDAC.

We give a negotiation framework to allow service agents
to negotiate with each other. The negotiation is proved to
have good properties by simulation. The negotiation also
helps us to exert special more effective normative systems
on the Kripke structure. That is within our future work.

8. ACKNOWLEDGMENTS
This work was supported financially by the National Nat-

ural Science Fund for Distinguished Young Scholars of China
(Grant No.60625204) the National Basic Research and De-
velopment 973 Program (Grant No. 2009CB320701), and
the Key Projects of National Natural Science Foundation
of China (Grant Nos. 90818026, 60736015). Our thanks to
ACM SIGCHI for allowing us to modify templates they had
developed.

9. REFERENCES
[1] S. Abdallah and V. Lesser. Modeling task allocation

using a decision theoretic model. In Proceedings of the
fourth International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS-2005), pages
719–726, 2005.

[2] T. Agotnes, W. van der Hoek, M. Tennenholtz, and
M. Wooldridge. Power in normative systems. In
Proceedings of the eighth International Joint
Conference on Autonomous Agents and Multiagent
Systems (AAMAS-2009), 2009.

[3] T. Agotnes, W. van der Hoek, and M. Wooldridge.
Normative system games. In Proceedings of the sixth
International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS-2007), 2007.

[4] T. Agotnes, W. van der Hoek, and M. Wooldridge.
Robust normative systems. In Proceedings of the
seventh International Joint Conference on
Autonomous Agents and Multiagent Systems
(AAMAS-2008), 2008.

[5] A. Arsanjani. Service-oriented modelling and
architecture: How to identify, specify and realize
services for your soa. IBM developerWorks, IBM
Corporation, http://www.ibm.com/developerworks/
library/ws-soa-design1/, 2004.

[6] E. A. Emerson. Temporal and modal logic. MIT Press,
Cambridge, MA, USA, 1991.

[7] http://jade.tilab.com/.

[8] http://protege.stanford.edu/.

[9] S. Kraus, O. Shehory, and G. Taase. Coalition
formation with uncertain heterogeneous information.
In Proceedings of the second International Joint
Conference on Autonomous Agents and Multiagent
Systems (AAMAS-2003), pages 1–8, 2003.

[10] E. Manisterski, E. David, S. Kraus, and N. R.
Jennings. Forming efficient agent groups for
completing complex tasks. In Proceedings of the fifth
International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS-2006), pages
834–841, 2006.

[11] E. Maximilien and M. Singh. A framework and
ontology for dynamic web services selection. IEEE
Internet Computing, 8,Issues 5,:84–93, Sept-Oct 2004.

[12] E. M. Maximilien and M. P. Singh. Toward autonomic
web services trust and selection. In Proceedings of the
2nd international conference on Service oriented
computing, pages 212–221, 2004.

[13] M. P. Papazoglou. Service-oriented computating:
Concepts, characteristics and directions. In 4th
International Conference on Web Information Systems
Engineering, pages 3–12, December 3-12 2003.

[14] O. Shehory and S. Kraus. Methods for task allocation
via agent coalition formation. Artificial Intelligence,
101,Issues 1-2,:165–200, May 2005.

[15] K. Sycara, M. Paolucci, A. Ankolekar, and
N. Srinivasan. Automated discovery, interaction and
composition of semantic web services. Journal of Web
Semantics, 1(1):27–46, September 2003.

[16] J. Tang, L. Zheng, and Z. Jin. Web services composing
by multiagent composing. Journal of Systems Science
and Complexity, 21(4):597–608, December 2008.

[17] L. Zheng and Z. Jin. Requirement driven agent
collaboration. In Proceedings of the 2007 International
Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2007, pages 446–448, May 2007.

846

